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Abstract

The Voice-Controlled Interface for Digital Musical Instruments is an alternate controller conceptually designed
to be an extension to traditional touch-based musical interfaces. It allows simultaneous control of an arbitrary
number of instrument parameters by variation of the performer vocal sound timbre. The generative and adap-
tive dual-layer mapping strategy makes an extensive use of unsupervised machine learning and dimensionality
reduction techniques to compute hoc voice map for musical control. The aim is to maximize the breadth of
explorable perceptual sonic space of specific digital musical instruments, providing dimensionality reduction
of the instrument control space and adaptation to the vocal characteristics of the performer. In this paper we
discuss mainly application and user perspective of the interface, together with a high level overview of the
system. We describe the procedure to train and setup the system as well as the available user options and their
effects on the interface response and instrument interaction. Finally we introduce a performance exclusively
based on the Voice-Controlled Interface, in which one instrument at time is driven by the performer’s voice
and then looped, building up a an improvised composition.
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1. Introduction

computers, software development tools, soft-
ware libraries, communication protocols, sen-
sors, and hardware development kits have
drastically streamlined the implementation
process of musical interface. These improve-
ments have also reduced the range of neces-
sary skills for the designer, while constantly
enhancing the musical interfacing potential. As
we discussed in (Fasciani and Wyse, 2012a),
where we firstly introduced our Voice-
Controlled Interface for Digital Musical Instru-
ments (VCl4DMI) approach, the concurrent use
of multiple interfaces in musical performance

A distinguishing and intrinsic feature of Digital
Musical Instruments (DMI) is the physical inde-
pendence of the sound generation component
from the interface, despite the specific synthe-
sis algorithm and the user input modality. This
has promoted the proliferation of novel musi-
cal interfaces, mapping strategy and instru-
ment control techniques, described and for-
malized in (Arfib and Kessous, 2002), (Paradiso
and O'Modhrain, 2003), (Wanderley and
Depalle, 2004), and (Miranda and Wanderley,
2006). Moreover, improvements on specifica-
tions and high availability of general-purpose



is rarely addressed in literature. The majority
of interfaces require hand gesture as the input
modality, hence there is a bottleneck in the
flow of musical intention to realization, or ra-
ther a limit in the number of events and pa-
rameters simultaneously controllable by the
user. In this context the performer’s voice can
often be considered as a “spare bandwidth”
(Cook, 2009), hence used as an extra source of
gesture to ease this limitation.

Human voice has been adopted as the input
modality for DMI interfaces and in (Fasciani
and Wyse, 2013a) we review the existing litera-
ture highlighting application and limitation of
the proposed approaches. The VCI4DMI aims
to be generic and adaptive to implement ad
hoc interfaces for any sound generation or
processing device. We consider it as an exten-
sion more than an alternative to traditional
touch based interfaces and the control target
is an arbitrary number of real-valued time-
continuous instrument parameters. The
VCI4DMI maps continuous gestural parame-
ters to continuous musical parameters (Kvifte
and Jensenius, 2006) that mainly affect the
instrument’s timbre in an high dimensional
space, and accordingly with Mulder (2000) it
can be classified as an alternate controller.
This design choice is meant to preferably, but
not mandatorily, map discrete and time-
critical musical parameters, such as temporal
event triggering, to traditional touch-based
interfaces, because potential errors and the
intrinsic delay of the voice processing may
have a sensible impact to the rhythm, harmo-
ny, or melody structures.

The use of the vocal timbre as the gestural
input modality introduces high variabilities in
the system. At the same time adapting the
mapping to the parameters-to-sound charac-
teristic of specific instrument is not trivial.
Therefore to ease the system setup procedure
we use automatic and generative strategies
(Hunt et al., 2000), which make extensive use
of machine learning and dimensionality reduc-
tion techniques to compute the mapping (Car-
amiaux and Tanaka, 2013). In the VCI4DMI we
employ mostly unsupervised techniques to
further minimize the amount of data that the
user has to provide to the learning algorithms.
This implies that the user, in turn, has to learn

the outcome of the automatic mapping pro-
cess, which can be further manually tuned at
runtime.

2. System Overview

The VCI4DMI allows interfacing arbitrary in-
strument to arbitrary “vocal gesture” and it
automatically adapts the mapping by a prior
learning stage in which it analyses and pro-
cesses the specific characteristics voice and
instrument. The interface is based on a dual-
layer strategy that maintains separated the
adaptive map for the voice and the instrument.
The analysis and learning processes are kept
separated as well. This approach allows the
reusability of the same voice map with differ-
ent instruments and vice versa, a further sim-
plification of the system setup.

The DMI analysis and mapping approach is
based on an extension of the work presented
in (Fasciani and Wyse, 2012b). In this context
we consider a DMI any device that generates
or processes a sound signal, thus a sound syn-
thesizers or audio effects. Any combination of
these still falls in the above-mentioned catego-
ries. The relationship between DMI’s parame-
ters and output sound must be deterministic
and we assume no prior knowledge the syn-
thesis/processing algorithms. The subset i; of
instrument parameters that will be mapped to
the interface must be specified. Therefore an
automatic procedure generates all the possible
combinations of DMI parameters and for each
one it analyses the output sound computing a
vector of perceptual-related sonic features.
The parameters and sonic data are stored re-
spectively in the matrices | and D, which char-
acterize the behaviour of the DMIL. In order to
analyze the output of sound processors, the
system provides them with a test signal that is
either noise or impulses. The different mode of
analysis and options are described in Section 3.
D represents the high dimensional sonic space
that describes how the DMI sound varies with-
in the i; set. We reduce it to a lower dimen-
sional space D", typically to two or three di-
mensions in the VCl4DMI context, using non-
linear dimensionality reduction techniques
such as ISOMAP (Tenenbaum et al., 2000). The
DMI mapping is based on the inverse relation-



ship D" to I, therefore the instrument’s param-
eters are retrieved browsing the reduced sonic
space, similar to intermediate perceptual layer
approach presented in (Arfib et al., 2002). The
arbitrary shape and distribution of D* may lead
to a difficult exploration of the space despite
the used controller. We assume that the ges-
tural control space has the same dimensionali-
ty as D", but the samples are uniformly distrib-
uted into a hypercube. We find the transfor-
mation that maps the samples in D" into an
uniform hypercube and maintains the neigh-
bourhood relations by a rank transformation
followed by a truss structure node relocation
iterative algorithm based on the Delaunay al-
gorithm (Persson and Strang, 2004), also used
for a similar purpose in (Lallemand and
Schwarz, 2011). Finally a Neural Network (NN)
learns the inverse of this nonlinear transfor-
mation, to be used in the runtime mapping.
Since relationship parameters-to-sound may
not be one-to-one, discontinuities may appear
in the DMI parameters generation flow. To re-
duce this implicit shortcoming we reduce the
search space in D" to those points that are in-
stantaneously within a user-defined distance in
the space l.

On the other end of the system the
VCl4DMI handles the variabilities that we find
in different performer’s vocal characteristics
and gestures, as well as voice capturing hard-
ware. The interface is designed to drive the
instrument with unchanged parameters if the
performer’s voice timbre doesnt vary over
time (“vocal posture”), while it allows the ex-
ploration of the instrument’s sonic space when
the voice changes over time (“vocal gesture”).
The temporal unfolding of the gesture is not
considered here because it would provide only
a mono-dimensional control space. The
VCl4DMI considers the multi-dimensional spa-
tial distribution of gesture in order to provide a
mean to explore the DMI’s sonic space. From a
set of user provided “vocal postures” and sev-
eral instances of the same “vocal gesture” we
compute a large set of heterogeneous low-
level features (LPC, MFCC, and PLP). We
search for the optimal features computation
configuration, as described in (Fasciani, 2012).
Noisy features over the postures are discarded,
while the remaining features computed over

the gesture define the high dimensional ges-
tural input space V. We implement a Gestural
Controller (GC) (Rovan et al., 1997) from this
space using the Self-Organizing Gesture (SOG)
method described in (Fasciani and Wyse,
2013b). The output lattice of the Kohonen's
Self-Organizing Map is used as a GC, while the
network is trained using a variation of the
standard algorithm. The data in V is pre-
processed using clustering, outlier detection,
and dimensionality reduction techniques
(ISOMAP or multiclass LDA) generating V".
The SOG technique compresses and expands
the dynamics in V remapping them into a low-
er dimensional uniform hypercube, with the
same dimensionality of the one embedded in
V, that typically for voice data is two or three.
It also guarantees a topology distortion-free
transformation and continuity in the GC inter-
mediate signals output.

The two learning stages described above
map the “vocal gesture” and the DMI’s sonic
space to equal dimension and uniformly dis-
tributed hypercubes. Hence the connection
between the two layers of the VCI4DMI is
simply a linear one-to-one mapping. This is
possible despite the different dimensionality,
shape, distribution and number of elements in
D and V. Indirect distance weighting is used in
both spaces as an interpolation technique to
cope with regions where the density of sam-
ples is low. In the runtime interface the hyper-
cube mapping is direct in the voice related lay-
er, while it is inverse in the DMI related section.
In Figure 1 is an example of the two spaces af-
ter a reduction to two dimensions.
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Figure 1. An example of V (left) and D (right)
reduced to two dimensions by ISOMAP.

The differences between the spaces are evi-
dent and not predictable, as shown in the Fig-
ure 1 examples, therefore generative mapping



techniques offer an effective solution in this
context. The mapping tuning options and the
DMI parameters retrieval preferences are de-
scribed in the next section. Figure 2 presents
simplified schemes of the VCI4DMI offline

learning phase and runtime part. In the bottom
section, the vector ¢, exchanged between the
two layers, represents the GC output within
the uniformly distributed hypercube.
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Figure 2. Simplified schemes of the VCI4DMI offline learning phase (top) and runtime part (bottom).

3. User Perspective

A functional prototype of the VCI4DMI* is im-
plemented concurrently in Max/MSP and
MATLAB. We developed a set of Max For Live
devices to easily interface DMIs hosted in
Ableton Live. In this section we describe the
procedure that the user has to follow to train
and use the system. Moreover we report all the
available choices in the learning phase and in
the runtime part. Most of these are exposed in
the Max/MSP GUI, and eventually propagated
to MATLAB using the OSC protocol.

At first, the user has to identify the DMI pa-
rameters that will be controlled by the system
(up to eight in the prototype but theoretically
unlimited). For each one the user specifies
range and analysis resolution. These directly

* http://stefanofasciani.com/vcigdmi.html

affect the number of entries in I, in D, and in
turn the overall analysis and learning time.
From our experience, an excessive number of
unique parameters combinations do not bring
usability improvement to the system since an
interpolation method is in place. For synthe-
sizer, the analysis features available are the
energy of the Bark bands, the MFC coeffi-
cients, or spectral moments. The user must
also select one of the following analysis
modes: sustain phase averaging, attack-decay-
release envelopes, sustain phase dynamics.
For effects it is possible to run the analysis in
the frequency or in the time domain. In the
first case we use noise (white, pink or brown)
to excite the DMI and then it can be analyzed
with the same synthesizers available modali-
ties. For the time domain option, the sound
processor is excited with an impulse and the
response is captured. The impulse response
can be down-sampled and used directly as a
high dimensional feature vector or it can be



processed to compute features such as the
total energy, slope, T6o, number of peaks, and
maximum amplitude. For both DMI categories,
synthesizers and processors, the GUI allows
the user to fine tune low-level analysis param-
eters such as: window size and overlap, num-
ber of bands, MIDI note and velocity, analysis
timings, number of feature vectors per state,
impulse response duration, and individual fea-
ture mask.

The SOG GC can be trained using any “vo-
cal gesture” that comprises any sequence of
voiced and unvoiced sounds. As mentioned
before the temporal unfolding of the gesture is
not considered by the system, but the focus is
on the spatial unfolding of the low-level vocal
features. The user must provide several in-
stances of the same "“vocal gesture” and the
“vocal postures”. A basic example of gesture is
the gliding between the vowels [i] and [u], and
the two related postures would be exactly the
vocal sounds [i] and [u]. Gestures and postures
can be captured “on the fly” or provided to the
training script as audio files. In the latter case,
all the feature computation parameters (sam-
ple rate, window size, window step, pre-
empbhasis, order of LPC, MFCC and PLP) are
set automatically to optimal values found by
an iterative algorithm, instead of leaving them
to default values or user-defined values.

The mapping layers generated in the learn-
ing stages are saved into separate memory
structures and dumped to binary files, so that
they can be reutilized in different interface im-
plementations. When starting the runtime
VCl4DMI, the user has to load a pair of maps,
one for the voice and another for the instru-
ment. Since we used only unsupervised tech-
niques in the learning process, at first the user
should learn and get familiar with the mapping
that the system has generated. However the
GUI exposes a large set of parameters and op-
tions that advanced users can use to tune or
change the default VCI4DMI response. These,
visible in the GUI detail in Figure 3, can be
changed while the system is running. The re-
sponse can be modified between these two
theoretical extremes: specific vocal timbres
mapped to specific DMI's sounds, or vocal tim-
bre variations to browse the DMI sonic space in
different directions. The VCI4DMI stores all the

user preferences in the map file so that is not
necessary to configure the map again after a
system restart.
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Figure 3. Detail of the VCI4DMI GUI section re-
lated to the runtime parameters and options.

For the SOG based GC the user can choose
to restrict the iteration movement in the lat-
tice to the Moore neighbourhood and option-
ally use the gravity instead of the Euclidean
distance as the search metric. He can also set
how voice vectors outside the validity region
are handled: considered, ignored, or projected
to the boundary of the region. Scaling coeffi-
cient can be applied to the lattice and to the
validity region, while the mapping of the single
GC output dimensions can also be inverted. An
option to adapt the map during runtime is
available as well. It simply applies an automat-



ically computed offset to every lattice dimen-
sion lattice.

In the DMI mapping section the user can se-
lect to bypass the NN and map the GC output
either to the original D", or to the D" rear-
ranged into the uniformly distributed hyper-
cube, useful when the NN learning perfor-
mance is poor. The following search can be
across the entire sonic space, restricted to the
first or second Moore neighbourhood level,
within a user defined radius, or within an adap-
tive radius determined from to the instantane-
ous vocal gesture variation. In all these cases
the neighbours or the points within the radius
are measured in the parameters space | and
brought back to D". The indirect distance
weighting interpolation for the SOG GC and
for the DMI mapping can be disabled and the
interpolation exponent modified. Moreover
both layers can be bypassed, allowing the in-
coming data to pass through.

There are three available gates to tempo-
rary disable the interface, interrupting the flow
of input gestural data. These are based on en-
ergy, low-level features vector distance, and
voiced/unvoiced detection. Each one has an
independent threshold value and opening
time. Moreover it is possible to define a default
DMI parameters configuration to which the
system will force the instrument when the
gates are closed. The user can also define the
transition time to the default parameters. The
VCI4DMI can optionally generate MIDI notes
to trigger sound generators. Energy, pitch and
onset detected are mapped one-to-one to
their MIDI equivalents. The pitch, velocity and
duration can be manually defined or individual-
ly set to automatic mode so that they are de-
rived from the vocal input.

There are four real-time visual feedback
provided to the user: position of the GC output
in the hypercube, DMI parameters, position
and transitions in the SOG lattice with validity
region, and position in sonic space with active
neighbourhood highlighted. The latter two are
not visible in Figure 3. The visual feedbacks
play a key role in getting familiar and tuning
the automatically generated mapping. Moreo-
ver the system can be tuned to respond more
smoothly or sharply by changing the voice sig-

nal feature computation window overlap, or
the feature one-pole low pass filter. In the cur-
rent implementation, partially optimized, the
interface can generate a new DMI parameters
vector every 8ms in worst-case scenarios (4ms
typical), that is further linearly interpolated
every 1ms.

4."“One at Time by Voice” Setup

The version of VCI4DMI used in this perfor-
mance was specifically developed with addi-
tional features to fit the needs of this scenario.
The voice is the only gestural input used to in-
teract with the DMIs, therefore fast recalling of
mapping presets, seamless interaction with
the DMI hosting Digital Audio Workstation
(DAW), off screen visual feedback and mini-
malistic hand interaction are essential. This
specific version loads a bank of voice maps and
a bank of instrument maps. Individual ele-
ments of the two banks can be paired and
saved into a specific preset, which can be re-
called with the press of a single button on an
external interface or on a remote control. Each
preset stores also information about DAW in-
teraction, such as instrument track, input
mode (parameters and/or MIDI), record mode,
and quantization. System visual feedback are
encoded and routed to a g by g LED matrix. To
load a new pair of maps the system temporary
disables the interface for as little as 15oms.

The pool of instruments and effects loaded
in Ableton Live for this live performance was
selected to demonstrate the wide range of
sonic interaction capabilities offered by the
interface. While the DAW loops on 4 bars, the
performer builds up an improvised composi-
tion recording on each instrument’s track the
MIDI and instrument parameters generated by
the VCI4DMI. Only one instrument at a time is
under the direct control of the performer.
However for each DMI the performer can con-
trol as many as eight real valued parameters
simultaneously and trigger MIDI notes. The
track recording and the MIDI generation is op-
tionally enabled so that the performer-
instrument interaction can be limited to just
parameters modulation in certain cases.
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